### **Teacher Notes:**

**Lesson Objective:** In this lesson, students will explore how the Mayan number system works. The purpose of this lesson is to get students thinking about place-value systems other than our own base-10 system. This is intended to be a challenging, but fun investigation that tasks students with gathering relevant clues and generating their own hypotheses as to how the Mayans counted.

Slide 1-6: Teacher overview

Slides 8-9: Who are the Mayans? Fun facts on Mayan Civilization

Slide 10-11: Lesson Overview

Slide 12-13: Base-10 system Students recall how Hindu-Arabic Number system works.

Slide 14-17: Cracking the Code Students use Mayan numbers and their values to come up with rules for how number system works

Slide 18: Create your own! Students can create their own number system! They can create their own symbols and place-value

Slide 19: Optional Extension For students who have completed their own system or want a take-home extension

## Mayan Number System

The Mayan number system uses a base-20 number system consisting of 3 symbols...



## Mayan Number System

After 19, Mayans would create another "floor" of values that each were worth 20, rather than 1:



https://www.storyofmathematics.com/mayan.html/

## Mayan Number System

As a result, the largest number that be created with just 2 floors is 399. Thus, after 399 a 3rd "floor" is required:

|   | = 400   |     | = 819   |
|---|---------|-----|---------|
| Ø | 0 x 1   |     | 19 x 1  |
|   | 0 x 20  |     | 0 x 20  |
| ٠ | 1 x 400 | • • | 1 x 400 |

## "Cracking the Code" Lesson Instructions (part 1-2)

**Set-up:** Students may work individually or in pairs. Likely that larger groups (3+) will be too big to ensure that students are able to generate their own ideas at their own paces.

**Pacing:** Students can progress through worksheet at their own pace with instructor circling to answer questions / offer hints *or* students can come back together at the end of each part (indicated below and in slides). If students are done early there are differentiated routes provided below.

#### Part 1: Students will first see just one level (numbers 0-20).

- Encourage students to see if they can identify values for each symbol they see. (they should have values for dots, lines and "canoe" / "shell"
- All students to formulate any rules they may notice of how to write the numbers (dots on top, lines on bottom etc)
- If students are done early, they can tackle challenges listed on bottom of slide.

Part 2: Students will adapt their learning from part 1 to include multiple levels/floors

- Encourage students to create boxes around each level if necessary
- Ask students if they can make any parallels between the "levels" of mayan numbers to the place-values of our hindu-arabic system
- If students are done early, they can progress to part 3 and begin to write their own number.

## "Cracking the Code" Lesson Instructions (part 3)

Part 3: Students create their own number systems - pairs suggested as this is challenging

- This task is challenging as students often struggle to depart from the base-10 system they are so familiar with
- Students will create their own number systems using symbols and place-values other than Mayan / Hindu-Arabic systems
- Student may start by drawing new symbols for their numbers. This could help them understand that they are creating a number system that is totally new!
- If students are stuck, encourage students to decide what base they want to use and how that might relate to the number of unique symbols/digits they need to create.
- Students can have the option to present their number systems and/or make an investigation with it!

Part 4 : Optional extension for students to explore binary numbers

• Research and presentation project for students who are interested in learning more about new number systems

## Class slides

## Mayan Civilization 2600 BC - 900 AD

Chichén Itzá at dusk. (Image credit: Theodore Van Pelt / EyeEm via Getty Images)

## Fun facts of Mayan Civilization

- Mayan empire was in "Mesoamerica" Mexico and parts of Central America.
- **2.** Built over 60 cities
- Invented their own calendars, farming methods, writing systems, sports and religion
- **4.** Built palaces, pyramids, ceremonial structures and temple observatories *all without metal tools.*
- 5. Had their own writing system with up to 800 glyphs
- 6. Mathematicians! The Maya invented the concept of 'zero'!



## Mayan Number System



Image: "Detail of Codex Dresdensis drawn by Lacambalam" by Lacambalam - Own work. Licensed under CC BY-SA 4.0 via Commons.

## Uncovering the Mayan Number System

### Today's Lesson:

- 1. Intro: How do we keep track of numbers?
- 2. Cracking the code: using just a few clues, can we figure out how Mayans counted?
- 3. Creating our own number systems...

## Part 1: How do we count?

### Hindu-Arabic numerals (6th/7th century India)

## **1 3 4 8**

What does each digit above represent?

## Part 1: How do we count?

## 7 348

# 1,000 + 300 + 40 + 8 $1 \times 1,000 + 3 \times 100 + 4 \times 10 + 8 \times 1$

You have been given only ten Mayan numbers and their corresponding values ... Can you determine how to Mayans counted from these clues?

## Cracking the code... part 1



Think you've got it? What would the numbers 7, 11 and 18 be?

## Cracking the code... part 2



Uh oh! Things just got harder... What do you think the different levels could mean?

## Cracking the code... part 3

| = 5   | = 11   | = 30             |
|-------|--------|------------------|
| = 35  | = 300  | = 335            |
|       |        | Create your own! |
| = 401 | = 1221 | =                |

## Your turn!

Can you make your own, unique, numerical system? Use a different place-value system than the mayans and a different place-value system than our own (base 10)

## Optional challenge...

#### Can't stop thinking about number systems?

Computers have their very own number system, called "binary numbers". Can you figure out how computers count? Option to do some research and create a 5-min presentation for your classmates on the binary number system for next class!

1111000