

Essential Question: Is Democracy Fair?
 Lesson 1: Representation + Apportionment

This lesson begins by asking students to reflect on their prior assumptions on how represen tation functions in the United States. Students will then look at the 2010 census alongside each state's current congressional representation and determine a system for apportionment Lastly, the class will review the system that the United States uses to divide representatives and critique it's effectiveness.

- 1.0: Pre-assessment: reflection + retrieval
- 1.1: Questioning our assumptions about representation
- 1.2: Activity: Trying it ourselves
- 1.3: Simulation: How does the United States of America does it?

Lesson 2: District Drawing + Gerrymandering

Lesson two begins with a classroom simulation to demonstrate the power of district drawing in elections. Students will then learn about the history of gerrymandering lon both sides of the political spectrum). Lastly, students will complete an investigation to discover the mathematical strategies of using district-drawing to skew election results.

- 2.1 Simulating Districting in the Classroom
- 2.2 History of Gerrymandering
- 2.3 We, the gerrymanderers..

Lesson 3: Presidential Elections + Electoral College

The final lesson of the unit introduces the electoral college. The lesson focuses on how it is possible in a democracy to win an election but lose the popular vote. The class will participate in a full simulation to discover this potential outcome. Students will then participate in a group activity that asks them to consider how few votes are needed to win the general in a group activity that asks them to consider how few votes are needed to win the general
election. Lastly, students will reflect on the qualities and shortcomings of the electoral college election. Lastly, students will reflect
and suggest an alternative system.

- 3.1 Lef's take a vote!
- 3.2: Electoral vs. Popular Vote
- 3.3: Group Activity: Majority Rules

[^0]

A More Perfect Union: Unit Map

Lesson 1: Representation + Apportionment

- 1.0: Pre-assessment: reflection + retrieval
- 1.1: Questioning our assumptions about representation
- 1.2: Activity: Trying it ourselves
- 1.3: Simulation: How does the United States of America does it?

Lesson 2: District Drawing + Gerrymandering

- 2.1 Simulating Districting in the Classroom
- 2.2 History of Gerrymandering
- 2.3 We, the gerrymanderers..

Lesson 3: Presidential Elections + Electoral College

- 3.1 Let's take a vote
- 3.2: Electoral vs. Popular Vote
- 3.3: Group Activity: Majority Rules

LESSON I/SLIDE 0

MINI-REFLECTION: this exercise is informal and is intended to get us thinking about how our electoral system works. Feel free to write brief, first-person statements on the following prompts. No research is necessary, and you will not be evaluated on this assignment.

1. What does it mean to live in a democracy?
2. If you had to pick three words to characterize a democracy what would they be?
3. How does the country determine representation? How many state representatives does each country get?
4. How does one win a presidential election?

Pre-assessment: to be given to students as they enter the classroom. Students should complete the short writing assignment in a shared document if possible so that the teacher has access to the assignment. Students should spend no more than 5 minutes completing the pre-assessment.
Instructions:

1. Ask students to record responses to the reflection questions in either a shared document or on a document to be turned in to the teacher.
2. Students should know that the reflection is NOT an evaluation.
3. Students will revisit this reflection at the end of the unit.

A More Perfect Union: Unit Map

Lesson 1: Representation + Apportionment

- 1.0: Pre-assessment: reflection + retrieval
- 1.1: Questioning our assumptions about representation
- 1.2: Activity: Trying it ourselves
- 1.3: Simulation: How does the United States of America does it?

Lesson 2: District Drawing + Gerrymandering

- 2.1 Simulating Districting in the Classroom
- 2.2 History of Gerrymandering
- 2.3 We , the gerrymanderers..

Lesson 3: Presidential Elections + Electoral College

- 3.1 Lef's take a vote
- 3.2: Electoral vs. Popular Vote
- 3.3: Group Activity: Majority Rules

Objective: The purpose of this slide will be to uncover the current understandings of how representation is assigned in the United States.

Instructions:

1. Ask students to discuss in pairs: How does the country determine how many representatives each state has?
2. Prompt students to address both branches of congress; the senate and the house.
3. Possible student answers include:

- "Larger states get more representatives"
- "There is a ratio between the number of representatives and state population"
- Response: Ask students to guess what the ratio might be between population and representatives and what information they would need in order to determine this.

- LESSON $1 / S L I D E 2$

Congressmen by State

How do we determine what the ratio is between citizen and representative?

Objective: The purpose of this slide will be to come up with a function for how to determine how many representatives each stay receives.
Instructions:

1. Ask students to use the information on the board to create a formula that deter mines how many representatives each state receives.
2. Potential questions to ask:

- Should we include Wyoming (least populated state) in this calculation?"
- Are there other states we should not include in our calculation?
- Response: Wyoming will skew the data as the population is well under the ratio of citizen:representative but will still receive a congressman. Other small states may skew the data. Large states should not skew the data.

2000 to 2010: Changes in Congressmen

Illinois State Population 2000 (12,419,293) 2010 ($12,830,632$

New York State Population 2000 (18,976,457) $2010(19,378,102)$

Texas State Population $2000(20,851,820)$ 2010 (25,145,561)

[^1]Objective: Compare the answers established in the previous slide to the facts on the board. The purpose of this slide is to prove that though a ratio for population to number of congressmen is mostly accurate, it doesn't completely explain the system. If it did, states would not lose representation when their population grows.
Instructions:

1. Ask students to compare their results from the previous slide (the ratio between citizen : representative) to the figures on the board.
2. Possible student answers include:

- "Maybe the ratio changes every 10 years depending on the population size?"
- "How would they calculate the new ratio every decade?"
- Response: The number of congressmen in this country has stayed at 435 since 1911, yet the country's population has almost quadrupled.

A More Perfect Union: Unit Map

Lesson 1: Representation + Apportionment

- 1.0: Pre-assessment: reflection + retrieval
- 1.1: Questioning our assumptions about representation
- 1.2: Activity: Trying it ourselves
- 1.3: Simulation: How does the United States of America does it?

Lesson 2: District Drawing + Gerrymandering

- 2.1 Simulating Districting in the Classroom
- 2.2 History of Gerrymandering
- 2.3 We, the gerrymanderers...

Lesson 3: Presidential Elections + Electoral College

- 3.1 Let's take a vote!
- 3.2: Electoral vs. Popular Vote
- 3.3: Group Activity: Majority Rules

Fixed: 435 members of the house

Actviity: how do you divvy up the 435 members of the house fairly Caveat: no such thing as a $1 / 2$ congressman! Create a system or formula that you
believe most fairly divides us our representation.

Objective: The purpose of this slide is to demonstrate how challenging (or impossible) it is to divide up a fixed number of representatives fairly.

Instructions:

1. Ask students to discuss in pairs: How might you divide up a fixed number of congressmen as fairly as possible?
2. Potential questions to ask:

- Why wouldn't a fixed ratio do the trick? (people are whole, not fractions)
- How do you make sure every state has a representative (Wyoming...)
- What system is the most fair? Is any system totally fair?

3. Activity: how do you divvy up the $\mathbf{4 3 5}$ members of the house fairly?

- Give students 15 minutes to think of their own system for determining a formula or system of dividing up all 435 representative of congress.
- Activity Materials: List of 2010 census state populations
- Groups: 3-4 students per group
- At the end of the activity, students will share their methods

A More Perfect Union: Unit Map

Lesson 1: Representation + Apportionment

- 1.0: Pre-assessment: reflection + retrieval
- 1.1: Questioning our assumptions about representation
- 1.2: Activity: Trying it ourselves
- 1.3: Simulation: How does the United States of America does it?

Lesson 2: District Drawing + Gerrymandering

- 2.1 Simulating Districting in the Classroom
- 2.2 History of Gerrymandering
- 2.3 We , the gerrymanderers...

Lesson 3: Presidential Elections + Electoral College

- 3.1 Let's take a vote!
- 3.2: Electoral vs. Popular Vote
- 3.3: Group Activity: Majority Rules

The United States of

\qquad

State:	\#1:	\#2:	\#3:	\#4:	\#5:
POPULATION (every 1 student = 1 million citizens	(million)	(million)	(million)	(million)	(million)
REPRESENTATIVES					
$A_{n}=\frac{P}{\sqrt{n(n+1)}}$					
$\frac{\text { Representative }}{\text { Population }}$					

Directions: Whichever group has the largest value of A receives the next representative. The task of the class is to now distribute all 25 representatives to the groups.

Objective: The purpose of this simulation is to model the system that the uses to United States divide their representatives. The system is dependent on the mathematical formula shown. Instructions:

1. Divide the class into groups with the following system: (example is for 18 students)

- State $1=1$ student \quad State $2=2$ students State $3=3$ students
- State $4=4$ students ${ }^{*}$ State $5=8$ students
*(Continue to distribute students as needed, be sure that the largest 'state' has at least3 more students than the next largest)

2. Have students name their states. Next, complete the apportionment according to the formula show

- Each group is responsible for keeping track of their "A" value as the activity proceeds.
- As each state receives a representative, they must recalculate their A value as well as the ratio of rep/population. Activity ends when all representatives have been allotted.

3. Potential questions to ask:

- What does A actually represent?
- Does this system work? What works about it?
- What changes might you put into place to make it more "fair"?

2.1 Simulation: Districting in the Classroom

A More Perfect Union: Unit Map

Lesson 1: Representation + Apportionment

- 1.0: Pre-assessment: reflection + retrieval
- 1.1: Questioning our assumptions about representation
- 1.2: Activity: Trying it ourselves
- 1.3: Simulation: How does the United States of America does it?

Lesson 2: District Drawing + Gerrymandering

- 2.1 Simulation: Districting in the Classroom
- 2.2 History of Gerrymandering
- 2.3 We , the gerrymanderers..

Lesson 3: Presidential Elections + Electoral College

- 3.1 Let's take a vote!
- 3.2: Electoral vs. Popular Vote
- 3.3: Group Activity: Majority Rules

do now:

1. as you walk into the room, be sure to grab a card from the deck
2. tables should have close to same number of students, but no table should have an odd number.

pern finin fing

Objective: The purpose of this activity is to demonstrate the power of district drawing and to allow students to experience the disenfranchising that it can cause.

Activity Prep:

- To prepare for this activity, the teacher should collect playing cards (or something similar) which are either red or black.
- There should be a card for every student in your class and you should have about 60% of the cards be one color, and 40% be another color. (e.g. 12 black cards, 8 red cards)
- You should then have a seating arrangement set up such that students are sitting at 5 separate tables.
- Direct students to take a card as they enter the classroom and to do their best to make the tables have a similar number of students. No table should have an even number of students (this is to make sure that there will be a winning vote at each table).
- Once all students have entered the classroom you may begin the simulation (see next slide)3 minutes

2.1 Simulation: Districting in the Classroom

LESSON 2/SLIDE 2

Would you rather have 5 hours of school, 7 days a week or 8 hours of school, 5 days a week?

BLACK: If you are holding a black card, you represent a voter who would rather have 8 hours of school for 5 days.

RED: if you are holding a black card, you represent a voted who would prefer 5 hours of school, every day of the week

District 1		District 2		District 3		District 4		District 5	
RED	BLACK								

Objective: The purpose of this activity is to demonstrate the power of district drawing and to allow students to experience the disenfranchising that it can cause.

Activity Instructions:

1. Take a vote on the question posed. Students must vote according to their card color.
2. Determine the winner of the election. Each district holds the same weight.
3. Next, erase the votes and start the following scenario, beginning by addressing team RED, who ought to be the team with 40% of the vote given the distribution of cards at the beginning of the activity: "Team RED, you are now in power and can create whatever seating assignments you would like. If you are determined to win this vote, how would you change the seating?" Once they have changed the seating, tally up the votes to see if they succeeded. Discuss why or why not they were successful.
4. Erase the votes once more. Address team BLACK (the team with 60% of the vote): "Team BLACK, you've had enough of team Red, can you erase their vote entirely? Can you create a 5-0 result? If not how close can you get?" Once they have changed the seating, tally up the votes to see if they succeeded. Discuss why or why not they were successful.

Reflection Questions:

- If we had taken a popular vote, what would our results have been?
- What were the 3 results of our votes?
- What does this tell us about districting?
- What does it not tell us about districting? What's different?

Activity Reflection

1. Ask students to compare their results from the previous slide (the ratio between citi-
zen : representative) to the figures on the board.
2. Reflection questions

- If we had taken a popular vote, what would our results have been? Response: 40% red, 60% black
- What were the 3 results of our votes? Response: Discuss how this is possible
- Could red have eliminated black votes? What does this tell us about districting? Response: Whoever draws the lines, has the power over the vote.
- How does this exercise differ from the actual process of district drawing? Response: People aren't moved around, the lines are drawn, so it is somewhat more limited than free-movement.

2.2 History of Gerrymandering

A More Perfect Union: Unit Map

Lesson 1: Representation + Apportionment

- 1.0: Pre-assessment: reflection + retrieval
- 1.1: Questioning our assumptions about representation
- 1.2: Activity: Trying it ourselves
- 1.3: Simulation: How does the United States of America does it?

Lesson 2: District Drawing + Gerrymandering

- 2.1 Simulation: Districting in the Classroom
- 2.2 History of Gerrymandering
- 2.3 We, the gerrymanderers.

Lesson 3: Presidential Elections + Electoral College

- 3.1 Lef's take a vote!
- 3.2: Electoral vs. Popular Vote
- 3.3: Group Activity: Majority Rules

References:

1. Klarreich, Erica, and Quanta Magazine. "The Mathematics Behind Gerrymandering." Quanta Magazine uww.quantamagazine.org/the-mathematics-behind-gerrymandering-20170404/.

Objective: The purpose of this slide is to show examples of district-drawing, how political parties use algorithms to help win elections. The above example is taken from Quanta Magazine and shows four simulated state maps of the North Carolina vote in the 2008 presidential election between Obama and McCain. The votes were not altered in these simulations, just the district borders.

- LeSSON 2/SLIDE 5

Modern Gerrymanders

Objective: The purpose of this slide is to show examples of gerrymandered districts in modern congressional districts. This image was taken from an article on Gerrymandering by website, Represent.Us.

Potential questions:

- What strikes you as unusual about these districts?
- What aspects of district-drawing might you look for to identify a gerrymandered district?

References:

1. "Gerrymandering." RepresentUs, act.represent.us/sign/gerrymandering/

A More Perfect Union: Unit Map

Lesson 1: Representation + Apportionment

- 1.0: Pre-assessment: reflection + retrieval
- 1.1: Questioning our assumptions about representation
- 1.2: Activity: Trying it ourselves
- 1.3: Simulation: How does the United States of America does it?

Lesson 2: District Drawing + Gerrymandering

- 2.1 Simulation: Districting in the Classroom
- 2.2 History of Gerrymandering

- 2.3 We, the gerrymanderers...

Lesson 3: Presidential Elections + Electoral College

- 3.1 Let's take a vote!
- 3.2: Electoral vs. Popular Vote
- 3.3: Group Activity: Majority Rules

Objective: The purpose of the following slides is to practice, as a class, the power of redistricting. These problems are adapted from a lesson created for the Educational Resources section of Science Friday. ${ }_{1}$

Activity Instructions:

1. The teacher should articulate the following instructions for students:

- Work with the person next to them to determine how to draw district lines for the above 'state'so that all scenarios ($A-D$) are possible.

2. Students might assume that districts need to be the same size. If that's true, then they will not be able to make scenario C work (D is impossible). However, this is an assumption about how fair distribution ought to function, and is not necessarily true (unbalanced district-sizes is a characteristic of gerrymandering)
3. Use this example as one of the rules they should be generating in the worksheet to determine what are the best practices of district-drawing.

References:

1. Zych, Ariel. "District Drawing Is Like Sudoku." Science Friday, www.sciencefriday.com/ educational-resources/district-drawing-is-like-sudoku/

- LESSON 2/SLIDE 7

	$\bigcirc \bigcirc \bigcirc \bigcirc$
	0000
	$\bigcirc \bigcirc \bigcirc$
	0000
	- - - 0
	1000

3 DISTRICTS
Scenario A: 3 green, 0 white districts

Scenario C: 1 green, 2 white districts

3 DISTRICTS
Scenario B: 2 green, 1 white districts

Scenario D: 0 green, 3 white districts

Group Worksheet: work in groups to determine what the qualities of fair districting might be. Likewise, what are the indicators of unfair districting?

Objective: This slide introduces the group worksheet. The intention of the worksheet is to have students investigate the different ways in which one can manipulate district borders and the strategies that are indicative of a gerrymandered state. (see worksheet)

5 minutes

A More Perfect Union: Unit Map

Lesson 1: Representation + Apportionment

- 1.0: Pre-assessment: reflection + retrieval
- 1.1: Questioning our assumptions about representation
- 1.2: Activity: Trying it ourselves
- 1.3: Simulation: How does the United States of America does it?

Lesson 2: District Drawing + Gerrymandering

- 2.1 Simulation: Districting in the Classroom
- 2.2 History of Gerrymandering
- 2.3 We , the gerrymanderers..

Lesson 3: Presidential Elections + Electoral College

- 3.1 Let's take a vote!
- 3.2: Electoral vs. Popular Vote
- 3.3: Group Activity: Majority Rules
voting activity pt. 1: REPRESENTATION
The United States of

STATE	\#1:	\#2:	\#3:	\#4:	\#5:
POPULATION	(million)	(million)	(million)	(million)	(million)
REPRESENTATIVES					
$A_{n}=\frac{P}{\sqrt{n(n+1)}}$					
$\frac{\text { Representative }}{\text { Population }}$					

Objective: Part 1 of this activity will review the lessons of representation and apportionment.
Instructions: The format of this will depend on students being split into an odd number of groups. For an example sake, we will say that there are 20 students in the class, and we will split them into 5 , uneven groups. This activity works best when most (not necessarily all) groups are made up of an odd number of students.

Example:
Group A: 1 students Group B: 3 students Group D: 5 students Group B: 3 students

Group C: 4 students

Step 1: The representation procedure will go as follows:

- Each group will have representation apportioned in the process that was discovered in Lesson 1, dividing up a total of 15 representatives.
- Similar to the activity in lesson 1 , have each group keep track of their own A value and advocate for representation if their state has the largest A value. Continue this process until all 15 delegates are apportioned.

Example:

$$
\begin{aligned}
& \text { Group A: } 1 \text { students }=1 \text { rep } \\
& \text { Group } C: 4 \text { students }=3 \text { rep }
\end{aligned}
$$

$$
\text { Group E: } 7 \text { students }=5 \text { rep }
$$

- LESSON 3/SLIDE 2
voting activity pt. 2: THE VOTE

The United States of

STATE	\#1:	\#2:	\#3:	\#4:	\#5:
POPULATION	(million)	(million)	(million)	(million)	(million)
REPRESENTATIVES					
VOTE:					
ELECTORAL WEIGHT:					

Round 1: Which ice-cream flavor should I bring into class tomorrow?

- Top contenders are: "Vanilla" or "Chocolate"

Students may NOT write in their own selection for this simulation
If there a tie, students of a group must decide on how to best decide

Objective: Part 2 of this activity will introduce the electoral college.
Step 2: The first round of voting will be about ice-cream (or add in your own question as you see appropriate). Important considerations for the voting:

- Only two options: "Vanilla" or "Chocolate"
- Students may NOT write in their own selection for this simulation
- If there a tie, students of a group must decide on how to best decide. This is consistent with the federal law that requires each state to determine the results of a tie.
- See example results on the following page.

Examples of potential voting results.
Note: students should reflect on whether the electoral vote reflects the popular vote

12 minutes

LESSON 3/SLIDE 3

voting activity pt. 2: Reflection
The United States of

STATE	\#1:	\#2:	\#3:	\#4:	\#5:
POPULATION	(million)	(million)	(million)	(million)	(million)
REPRESENTATIVES					
VOTE:					
ELECTORAL VOTES WON:					

Round 2 Reflection: Given the results of the previous vote, how many votes can you Round 2 Reflection: Given the results of the previous vote, how many votes can you
lose while still winning the election? These votes are called "wasted votes" as they are not needed for an election victory.

Objective: This slide will ask students to reflect on the previous vote. The concept of a "wasted vote" is important in understanding how elections are won without the majority of
the popular vote.
Step 3: The teacher should give the following instructions:

- The teacher should ask the question posted on the slide: "Given the results of the previous vote, how many votes can you lose while still winning the election? These votes are called "wasted votes" as they are not needed for an election victory."
- Reflection Questions:
- "What is the significance of the wasted vote?"
- "What does it mean for elections in the United States?"

10 minutes

A More Perfect Union: Unit Map

Lesson 1: Representation + Apportionment

- 1.0: Pre-assessment: reflection + retrieval
- 1.1: Questioning our assumptions about representation
- 1.2: Activity: Trying it ourselves
- 1.3: Simulation: How does the United States of America does it?

Lesson 2: District Drawing + Gerrymandering

- 2.1 Simulation: Districting in the Classroom
- 2.2 History of Gerrymandering
- 2.3 We, the gerrymanderers...

Lesson 3: Presidential Elections + Electoral College

- 3.1 Le's take a vote!
- 3.2: Electoral vs. Popular Vote
- 3.3: Group Activity: Majority Rules

Objective: Students will look at this slide and determine why it might be possible to lose the popular vote and win the election. Once students have generated ideas as to why this is possible, they can then start the group activity. The graphics on this slide come from The Economist. ${ }_{1}$

References:

1. "America's Electoral College and the Popular Vote." The Economist, The Economist Newspaper, wnw.economist.com/graphic-detail/2016/12/28/americas-electoral-college-and-the-popu-lar-vote.

3.3 Group Activity: Majority Rules?

A More Perfect Union: Unit Map

Lesson 1: Representation + Apportionment

- 1.0: Pre-assessment: reflection + retrieval
- 1.1: Questioning our assumptions about representation
- 1.2: Activity: Trying it ourselves
- 1.3: Simulation: How does the United States of America does it?

Lesson 2: District Drawing + Gerrymandering

- 2.1 Simulation: Districting in the Classroom
- 2.2 History of Gerrymandering
- 2.3 We, the gerrymanderers..

Lesson 3: Presidential Elections + Electoral College

- 3.1 Ler's take a vote!
- 3.2: Electoral vs. Popular Vote
- 3.3: Group Activity: Majority Rules?

Objective: Students will look at this slide and determine why it might be possible to lose the popular vote and win the election.

Instructions: Once the class has generated ideas as to why it might be possible to win a general election but not the majority of the votes, the class may begin the group activity.

Step 1: Students are split into groups of 2-4 students in order that they all participate in the group discussions and activity.

Step 2: Students are given the worksheet which includes a given a spreadsheet of states and their corresponding electoral representation figures. Then, students will be asked to answer the questions stated above. (see worksheet)

Step 3: Lastly, students will complete a reflection exercise as their final assessment for the unit.

IMAGE REFERENCES

Lesson 1/Slide 1: Glenn, Dan. "What Is a Congressional District?" Wonk Report, wonk report.com/article/what-is-a-congressional-district/.
Lesson 1/Slide 2: McCann, Meghan. "2010 Census: Gains and Losses in Congressional Seats." Census 2010: Gains and Losses in Congressional Seats, www.ncsl.org/ research/redistricting/spotlight-census-2010.aspx.

Lesson 1/Slide 3: "United States Congressional Apportionment." Wikipedia, Wikimedia Foundation, 3 Mar. 2020, en.wikipedia.org/wiki/United_States_congressional_apportionment.

Lesson 1/Slide 4: Zych, Ariel. "District Drawing Is Like Sudoku." Science Friday, www. sciencefriday.com/educational-resources/district-drawing-is-like-sudoku/.
Lesson 2/Slide 4: Klarreich, Erica, and Quanta Magazine. "The Mathematics Behind Gerrymandering." Quanta Magazine, www.quantamagazine.org/the-mathematics-be-hind-gerrymandering-20170404/

Lesson 2/Slide 5: "Gerrymandering." RepresentUs, act.represent.us/sign/gerrymandering/
Lesson2/Slide 6: Zych, Ariel. "District Drawing Is Like Sudoku." Science Friday, www. sciencefriday.com/educational-resources/district-drawing-is-like-sudoku/.
Lesson2/Slide 7: Zych, Ariel. "District Drawing Is Like Sudoku." Science Friday, www. sciencefriday.com/educational-resources/district-drawing-is-like-sudoku/. Lesson 2/Slide 8: Lapowsky, Issie. "The Geeks Who Put a Stop to Pennsylvania's Partisan Gerrymandering." Wired, Conde Nast, www.wired.com/story/pennsylvania-parti san-gerrymandering-experts/.

Lesson 3/Slide 4: "America's Electoral College and the Popular Vote." The Economist, The Economist Newspaper, www.economist.com/graphic-detail/2016/12/28/ameri-cas-electoral-college-and-the-popular-vote.
Lesson 3/Slide 5: "2016 United States Presidential Election." Wikipedia, Wikimedia Foundation, 11 May 2020, en.wikipedia.org/wiki/2016_United_States_presidential_election.

[^0]: A unit created by Olivia Wheeler, Spring 2020
 Grotzer s Harvard Graduate School of Education course,
 543: Applying Congnitive Science to Learning and Thinking

[^1]: Brainstorm: If our calculations are accurate, how is this possible?

